Bayesian Networks for Set-based Collaborative Design
نویسندگان
چکیده
A set-based approach to collaborative design is presented, in which Bayesian networks are used to represent promising regions of the design space. In collaborative design exploration, complex multilevel design problems are often decomposed into distributed subproblems that are linked by shared or coupled parameters. Collaborating designers often prefer conflicting values for these coupled parameters, resulting in incompatibilities that require substantial iteration to resolve, extending the design process lead time without guarantee of achieving a good design. In the proposed approach to collaborative design, each designer builds a locally developed Bayesian network that represents regions of interest in his design space. Then, these local networks are shared and combined with those of collaborating designers to promote more efficient local design space search that takes into account the interests of one’s collaborators. The proposed method has the potential to capture a designer’s preferences for arbitrarily shaped and potentially disconnected regions of the design space in order to identify compatible or conflicting preferences between collaborators and to facilitate a compromise if necessary. It also sets the stage for a flexible and concurrent design process with varying degrees of designer involvement that can support different designer strategies such as hill-climbing or region identification. The potential benefits are the capture of expert knowledge for future use as well as conflict identification and resolution. This paper presents an overview of the proposed method as well as an example implementation for the design of an unmanned aerial vehicle.
منابع مشابه
DisTriB: Distributed Trust Management Model Based on Gossip Learning and Bayesian Networks in Collaborative Computing Systems
The interactions among peers in Peer-to-Peer systems as a distributed collaborative system are based on asynchronous and unreliable communications. Trust is an essential and facilitating component in these interactions specially in such uncertain environments. Various attacks are possible due to large-scale nature and openness of these systems that affects the trust. Peers has not enough inform...
متن کاملDisTriB: Distributed Trust Management Model Based on Gossip Learning and Bayesian Networks in Collaborative Computing Systems
The interactions among peers in Peer-to-Peer systems as a distributed collaborative system are based on asynchronous and unreliable communications. Trust is an essential and facilitating component in these interactions specially in such uncertain environments. Various attacks are possible due to large-scale nature and openness of these systems that affects the trust. Peers has not enough inform...
متن کاملAn Introduction to Inference and Learning in Bayesian Networks
Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...
متن کاملPRODUCT DEVELOPMENT IN PRODUCTION – NETWORKS
This paper presents an overview of new approaches in rapid product development in production networks from design points of view. The manufacturing industries are changing their focus to global sourcing as a means to improve performance and enhance competitiveness. Some partnerships created with this strategy improve product development through collaborative design. With the advent of e-Commerc...
متن کاملA Bayesian Networks Approach to Reliability Analysis of a Launch Vehicle Liquid Propellant Engine
This paper presents an extension of Bayesian networks (BN) applied to reliability analysis of an open gas generator cycle Liquid propellant engine (OGLE) of launch vehicles. There are several methods for system reliability analysis such as RBD, FTA, FMEA, Markov Chains, and etc. But for complex systems such as LV, they are not all efficiently applicable due to failure dependencies between compo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009